The Effect of H₂S on the Hydrogenation and Cracking of Hexene over a CoMo Catalyst

Hydrogen sulfide is known to inhibit the hydrodesulfurization (HDS) of thiophenic compounds over sulfided CoMo catalysts (1). Desikan and Amberg (2) reported that H₂S also inhibits hydrogenation over these catalysts. They postulated that two types of sites exist: strong sites, showing great affinity for thiophene, H₂S, and pyridine, and being responsible for hydrogenation and to a limited extent for desulfurization; and weaker sites, for desulfurization alone. Satterfield and Roberts (3), on the basis of thiophene desulfurization kinetic studies, also reported H₂S inhibition on hydrogenation. Lee and Butt (4) found that H₂S inhibited butene hydrogenation much more when pure 1-butene was used as the feed compared to its hydrogenation in thiophene HDS, and suggested that hydrogenation in the absence of H₂S occurs on an incompletely sulfided surface. Goudriaan et al. (5) studied the effect of H_2S on the hydrodenitrogenation of pyridine on a CoMo catalyst and found that an increase in H₂S concentration increased nitrogen removal and attributed this to enhancement of hydrocracking activity of the catalyst. Satterfield et al. (6) also found that thiophene increased hydrodenitrogenation of pyridine and attributed this to some interaction of hydrogen sulfide with the catalyst to increase the hydrogenolysis activity. We wish to report some results dealing directly with the effect of H₂S on the hydrogenation and cracking activity of sulfided a $CoMo/Al_2O_3$ catalyst.

Hydrogenation of 1-hexene was carried out in a stirred flow microbalance reactor (7), modified to accommodate liquid feeds (8). The catalyst was a commercial CoMo

formulation (Ketjenfine 124-1 · 5E H.D.), which contained 3.85% CoO and 12% MoO_3 supported on alumina, having 1.09% Si and 264 m^2/g surface area. The catalyst was sulfided at 400°C for 2 h with 9% H₂S in H₂, cooled to 350°C in He, and then subjected to a feed of benzothiophene, n-heptane, H_2 , H_2S for 3 weeks to achieve a steady-state condition. Following this, a solution of 1-hexene in *n*-heptane was substituted for the benzothiophene, maintaining a flow of H_2 and H_2S . Steady-state conversions were measured at several partial pressures of H₂S. A minimum concentration of 2% H₂S was employed to avoid possible catalyst structural changes (9). Products were analyzed by gas chromatography with a flame ionization detector, using an *n*-octane on a Porosil C column at 60°C. The major product was *n*-hexane, but small amounts of propylene were also present.

Rates of hydrogenation divided by the hydrogen partial pressure $(P_{\rm H})$ for several partial pressures of hydrogen sulfide $(P_{\rm S})$, at constant hexene partial pressure, were:

P _s (atm)	$\frac{\text{Rate}/P_{\text{H}}}{(\text{cm}^3/\text{min} \cdot \mathbf{g} \cdot \text{atm})}$	
0.015	0.099	-
0.037	0.100	
0.058	0.100	
0.071	0.101	

The results show that a fivefold increase in hydrogen sulfide concentration has not changed the rate of hydrogenation, indicating that the hydrogenation sites are not inhibited by hydrogen sulfide over the stable sulfided catalyst. The conclusions of Desikan and Amberg (2) and Satterfield and

FIG. 1. Effect of hydrogen sulfide on cracking activity.

Roberts (3) are based on conditions in the presence and absence of H_2S and the catalyst state will be different in both situations, as suggested by Lee and Butt (4), and demonstrated by Broderick *et al.* (9).

During the hydrogenation of hexene, some propylene was always formed due to cracking. Interestingly, the cracking activity increased linearly with H_2S partial pressure as shown in Fig. 1. Since the mechanism of cracking is believed to involve carbonium ions, it may be surmised that H_2S has generated some active protons to promote the cracking reaction. This could occur by heterolytic dissociation of H_2S , as, for example,

$$H_2S \rightleftharpoons SH_a^- + H_a^+, \qquad (1)$$

$$H_2S \rightleftharpoons S_a^{2-} + 2H_a^+.$$
 (2)

If the rate of cracking is proportional to the concentration of H_a^+ , then Eq. (1) would be favored based on the linearity of the plot of

Fig. 1, since Eq. (2) would predict a $P_{\rm S}^{1/2}$ relationship.

From our results, we conclude that H_2S has no effect on the hydrogenation function and increases the cracking function of sulfided CoMo catalysts. Since H_2S depresses the hydrogenolysis function, it appears that these three reactions occur on different active sites.

ACKNOWLEDGMENT

This research was supported under DOE Contract E(49-18)-2006 and the State of Utah.

REFERENCES

- Weisser, O., and Landa, S., "Sulfide Catalysts, Their Properties and Applications," Pergamon, New York, 1973.
- 2. Desikan, P., and Amberg, C. H., Canad. J. Chem. 42, 843 (1964).
- 3. Satterfield, C. N., and Roberts, G. W., AIChE J. 14, 159 (1968).
- 4. Lee, H. C., and Butt, J. B., J. Catal. 49, 320 (1977).
- Goudriaan, F., Gierman, H., and Vlugter, J. C., J. Inst. Petrol. 59, 40, (1973).
- Satterfield, C. N., Modell, M., and Mayer, J. F., AIChE J. 21, 1100 (1975).
- 7. Massoth, F. E., and Cowley, S. W., Ind. Eng. Chem. Fundam. 15, 218 (1976).
- 8. Ramachandran, R., and Massoth, F. E., in preparation.
- Broderick D. H., Schuit, G. C. A., and Gates, B. C., J. Catal. 54, 94 (1978).

R. RAMACHANDRAN F. E. Massoth¹

Department of Mining and Fuels Engineering University of Utah Salt Lake City, Utah 84112 Received June 27, 1980; revised August 7, 1980

¹ To whom correspondence should be addressed.